Hierarchically porous graphene as a lithium-air battery electrode.

نویسندگان

  • Jie Xiao
  • Donghai Mei
  • Xiaolin Li
  • Wu Xu
  • Deyu Wang
  • Gordon L Graff
  • Wendy D Bennett
  • Zimin Nie
  • Laxmikant V Saraf
  • Ilhan A Aksay
  • Jun Liu
  • Ji-Guang Zhang
چکیده

The lithium-air battery is one of the most promising technologies among various electrochemical energy storage systems. We demonstrate that a novel air electrode consisting of an unusual hierarchical arrangement of functionalized graphene sheets (with no catalyst) delivers an exceptionally high capacity of 15000 mAh/g in lithium-O(2) batteries which is the highest value ever reported in this field. This excellent performance is attributed to the unique bimodal porous structure of the electrode which consists of microporous channels facilitating rapid O(2) diffusion while the highly connected nanoscale pores provide a high density of reactive sites for Li-O(2) reactions. Further, we show that the defects and functional groups on graphene favor the formation of isolated nanosized Li(2)O(2) particles and help prevent air blocking in the air electrode. The hierarchically ordered porous structure in bulk graphene enables its practical applications by promoting accessibility to most graphene sheets in this structure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hierarchically porous and nitrogen, sulfur-codoped graphene-like microspheres as a high capacity anode for lithium ion batteries.

Novel hierarchically porous and nitrogen, sulfur-codoped graphene-like microspheres (3D NS-GSs) are synthesized using Ni microspheres as the template and using poly(vinylpyrrolidone) and (NH4)2S2O8 as the carbon and nitrogen precursor, respectively. As an anode material in lithium ion batteries, the 3D NS-GS electrode displays a superior capacity with excellent cycling stability.

متن کامل

Three-Dimensional Sulfur/Graphene Multifunctional Hybrid Sponges for Lithium-Sulfur Batteries with Large Areal Mass Loading

In this communication, we introduce the concept of three dimensional (3D) battery electrodes to enhance the capacity per footprint area for lithium-sulfur battery. In such a battery, 3D electrode of sulfur embedded into porous graphene sponges (S-GS) was directly used as the cathode with large areal mass loading of sulfur (12 mg cm(-2)), approximately 6-12 times larger than that of most reports...

متن کامل

A binder-free sulfur/reduced graphene oxide aerogel as high performance electrode materials for lithium sulfur batteries

Societies' increasing need for energy storage makes it necessary to explore new concepts beyond the traditional lithium ion battery. A promising candidate is the lithium-sulfur technology with the potential to increase the energy density of the battery by a factor of 3-5. However, so far the many problems with the lithium-sulfur system have not been solved satisfactory. Here we report on a new ...

متن کامل

A General Strategy to Fabricate Carbon‐Coated 3D Porous Interconnected Metal Sulfides: Case Study of SnS/C Nanocomposite for High‐Performance Lithium and Sodium Ion Batteries

Transition metal sulfides have a great potential for energy storage due to the pronouncedly higher capacity (owing to conversion to metal or even alloy) than traditional insertion electrode materials. However, the poor cycling stability still limits the development and application in lithium and sodium ion batteries. Here, taking SnS as a model material, a novel general strategy is proposed to ...

متن کامل

Three dimensional Graphene aerogels as binder-less, freestanding, elastic and high-performance electrodes for lithium-ion batteries

In this work it is shown how porous graphene aerogels fabricated by an eco-friendly and simple technological process, could be used as electrodes in lithium- ion batteries. The proposed graphene framework exhibited excellent performance including high reversible capacities, superior cycling stability and rate capability. A significantly lower temperature (75 °C) than the one currently utilized ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nano letters

دوره 11 11  شماره 

صفحات  -

تاریخ انتشار 2011